r - lm grouping by categorical variables (factors) -
this question has answer here:
- applying function lm() 2 answers
i've got following table , i'd love data frame lm slopes each industry. years 1999 - 2012 each industry , i'm looking slope of each industry in new table.
> head(mmfpdatad) year industry index 1 1999 farms -0.02352551 2 2000 farms 0.04081992 3 2001 farms 0.02435490 4 2002 farms 0.01056180 5 2003 farms 0.04876939 6 2004 farms -0.01805118
using mtcars
example data, try:
mtcars$slope <- ave(mtcars$mpg, as.factor(mtcars$gear), fun = function(x) lm(x ~ seq_along(x))$coef[[2]])
which gives slope per gear:
mtcars mpg cyl disp hp drat wt qsec vs gear carb slope mazda rx4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 0.6860140 mazda rx4 wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 0.6860140 datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 0.6860140 hornet 4 drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 -0.1864286 hornet sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 -0.1864286 valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 -0.1864286 duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 -0.1864286 merc 240d 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 0.6860140 merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 0.6860140 merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 0.6860140 merc 280c 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 0.6860140 merc 450se 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 -0.1864286 merc 450sl 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 -0.1864286 merc 450slc 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 -0.1864286 cadillac fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 -0.1864286 lincoln continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 -0.1864286 chrysler imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 -0.1864286 fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 0.6860140 honda civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 0.6860140 toyota corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 0.6860140 toyota corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 -0.1864286 dodge challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 -0.1864286 amc javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 -0.1864286 camaro z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 -0.1864286 pontiac firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 -0.1864286 fiat x1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 0.6860140 porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 -3.2700000 lotus europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 -3.2700000 ford pantera l 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 -3.2700000 ferrari dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 -3.2700000 maserati bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 -3.2700000 volvo 142e 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 0.6860140
Comments
Post a Comment